Research on Document Clustering Technology Based on Latent Semantic Indexing 基于潜在语义索引的文本聚类技术研究
Document Clustering Description Algorithm Based on Machine Learning 基于机器学习的文本聚类描述算法研究
XML Document Clustering Strategy Based on Adaptive Particle Swam Optimization Algorithm with Chaos 自适应的混沌粒子群算法优化XML文档聚类策略
This paper presents a method to study interdisciplines by document clustering analysis. 本文提出了一种通过文献数据聚类分析来研究学科交叉的方法。
Web document clustering algorithm based on heigh performance feature selecting function 基于高性能特征选择函数的Web文档聚类算法
Web document clustering algorithm based on semantic similarity 基于语义相似度的Web文档聚类算法
Method and its Application of Document Clustering Description Based on Combination Strategy 一种基于组合策略的聚类描述方法及其应用
A New Document Clustering Algorithm Based on Keywords and Abstract Correlation 基于关键词和摘要相关度的文献聚类研究
Fuzzy K-means document clustering analysis based on PSO algorithm 基于粒子群算法的文档模糊均值聚类分析
A GRASP-based clustering algorithm applied to document clustering 一种基于GRASP的文档聚类算法
Online Public Opinion Hotspot Detection and Analysis Based on Document Clustering 基于聚类的网络舆情热点发现及分析
Document clustering description is a problem of labeling the clustered results of document collection clustering. 标注文本集合聚类后生成的类簇被称为聚类描述问题。
A Document Clustering Algorithm Based on Immune Networks and Its Application 基于免疫网络的文本聚类算法及其应用
To improve the clustering quality of massive extensible markup language ( XML) document collections, this paper proposes a novel XML document clustering method. 为了提高大规模半结构化文档集的聚类质量,提出了一种新的XML文档聚类方法。
To improve document clustering, a document similarity measure based on cosine vector and keywords frequency in documents is proposed, but also with an input ontology. 为了改进文本聚类的效果,提出了将领域知识本体和文本关键词词频相结合的基于余弦向量的文本相似性测度方法。
Reference-based k-means algorithm for document clustering 基于参考区域的k-means文本聚类算法
A Mapping and Rescaling Framework for Document Clustering 一种基于空间映射及尺度变换的聚类框架
Application and Research of Web Document Clustering in Search Engine Web文档聚类在搜索引擎中的应用研究
The experiment results have shown that the hybrid clustering method can improve the document clustering performance. 实验结果表明,该聚类组合算法能改进文档聚类的性能。
Document clustering approach based on term clustering and association rules 一种基于术语簇和关联规则的文档聚类方法
In order to improve the clustering results and select in the results, the ontology semantic is combined with document clustering. A new document clustering algorithm based WordNet in the phrase of document processing is proposed. 为了提高聚类结果和允许在结果中进行选择,将本体语义与文档聚类相结合,在文档处理过程中提出了基于WordNet的新的文档聚类算法。
A Research of Document Clustering Algorithm Based on Vector Space Model 基于向量空间模型的文档聚类算法研究
Document clustering is one of most important research topic in information retrieval ( IR) and data mining ( DM). 文本聚类是信息检索(Informationretrieval:IR)和数据挖掘(DATAMINING:DM)等领域的一个重要研究方向。
Through the document clustering, the set of documents are gathered into clusters. This experiment achieves better results. 通过文本聚类技术,将文本聚集成簇,取得了较好的实验结果。
Experimental results prove integrating two types of knowledge can effectively assist document clustering. 实验结果证实了融合两种知识可有效辅助文本聚类。
In order to effectively analyze the information in the XML document, so the research of XML document clustering has become a hotspot in current research. 为了有效的分析XML文档中的信息,XML文档聚类研究也就成了当前研究的热点。
The division to the large-scale irregular text information is an important application research of the document clustering. 对大规模无规律的文本信息进行划分,是文本聚类的一个重要的应用研究。
Document clustering analysis is the important efficient methoed for document utilization. 文档聚类分析就是对文档进行高效利用的重要方法。
Because the peer is likely to have many topics, we give a document Clustering algorithm. 由于节点很可能具有多个主题,为了对主题进行分类,给出了节点聚类算法。
Document clustering is an important research topic of natural language processing and is widely applicable in areas such as information retrieval, web mining and digital libraries. 文本聚类是自然语言处理研究中一项重要研究课题,文本聚类技术广泛地应用于信息检索、Web挖掘和数字图书馆等领域。